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Infrared (IR) thermal imaging has aroused great interest due to its wide application in medical, scientific, and military fields.
Most reported approaches for regulating thermal radiation are aimed to realize IR camouflage and are not applicable to
enhance thermal imaging. Here, we introduce a simple and effective method to process porous glass by femtosecond laser
scanning, where distributed nanocavities and nanowires were produced, which caused improvement of the treated glass
emissivity. The as-prepared sample possessed better IR thermal radiation performance but lower transmittance to visible
light. We also demonstrated its applicability by placing it in different backgrounds, where the IR image temperature of laser-
treated glass was closer to the actual environment, and this strategy may provide a new vision for enhanced thermal
imaging.
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1. Introduction

Any object with a temperature higher than absolute zero will
emit thermal radiation as stated in Planck’s law[1]. According
to the Stefan–Boltzmann law, the total thermal energy radiated
from the surface of an object is proportional to the emissivity ε
and the fourth power of the temperature. Thus, the infrared (IR)
imaging can be controlled by either regulating the emissivity or
changing the surface temperature. In nature, many organisms
achieve better survival by adjusting their own IR radiation[2–4].
Inspired by natural creatures, imitate biological regulation of
surface heat radiation to achieve personal thermal manage-
ment[5,6], IR camouflage[7,8], IR radiation cooling[9,10], and other
functions[11–13] has received widespread attention.
IR imaging can be controlled by either regulating the emissiv-

ity or changing surface temperature, which is based on Stefan’s
law. Extensive technologies on adjusting the thermal radiation
have been reported so far, such as chemical coating, ultraviolet
lithography[14], and other methods[15,16]. Zhu et al. completed
the high-temperature IR camouflage, which is based on the
combination of the SiO2 aerogel and the Ge/ZnS wavelength-
selective emitter[8]; Kirchhoff’s law, which exhibits the absorp-
tivity equal to emissivity during thermo-dynamic equilibrium,
played a vital role in the design of the micro/nanostructures
to tailor the thermal radiation properties. Based on this

consideration, Qu et al. designed the two kinds of spatially
and spectrally resolved narrowband absorbers supported by 2D
grating nanostructures and gold upon metallic film[17]. Qi et al.
reported a kind of photonic crystals (PCs) with very low IR emis-
sivity to meet the target of IR stealth, acquired by constructing a
one-dimensional PC (1DPC) structure of Hs�Ge=ZnS�3Ge[18].
Nevertheless, these studies are almost reporting on methods
of decreasing IR radiation, and there were few reports about
improving IR radiation. Moreover, the above-mentioned fabri-
cation procedures are complicated and challenging to operate.
As a result, it is necessary to explore a simple and rapid way
to increase IR radiation.
Herein, the femtosecond laser direct writing technology was

applied to process micro-nano structured glass, the absorption
of visible light and emissivity of IR light rise due to the produc-
tion of the micro/nanostructures, and the size of nanocavities is
about 200–500 nm. The laser-ablated (LT) glass exhibits lower
transmittance of 16%–51%, accounting for the enhancement of
scattering sunlight and higher absorption of 8%–16.4% at the
visible wavelength than the untreated (UT) glass. In the IR wave-
length range, it can also be observed that the emissivity of the LT
glass is significantly increased, which leads to an improvement
in the outward radiation heat. We experimentally demonstrate
that higher IR image temperature appeared after processing, and
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the IR image of the LT glass is always closer to the actual envi-
ronmental temperature than the UT sample wherever they were
placed, which proved that the processed sample has better IR
thermal imaging.

2. Experimental Section

2.1. Preparation of porous structure

Femtosecond lasers can be used to fabricate micro/nanostructures,
changing the properties of materials and opening up new applica-
tions[19–29]. In this experiment, we employed a high-repetition
commercial femtosecond laser system (PHAROS, LIGHT
CONVERSION, Lithuania) with the frequency, central wave-
length, and pulse width of 75 kHz, 1030 nm, and 250 fs, respec-
tively. The laser beam was guided onto the substrate surface
through a two-mirror galvanometric scanner (intelliSCAN III 14,
SCANLAB, Germany) with an FTheta lens (f = 100mm). Laser
power, scanning line speed, and scanning line spacing were con-
trolled as 6 W, 0.2 m/s, and 10 μm, respectively. A 20mm ×
20mm glass (purchased from Guluo Quartz Glass Company,
Luoyang) of 1 mm thickness is fixed to a processing stage. The
rough surface of the glass was then fabricated by the line-by-line
femtosecond laser scanning process.

2.2. Characterization

The three-dimensional (3D) morphology and cross-section
height were characterized by laser confocal microscopy (LCM,
Axio LSM700, Zeiss, Germany). The micro/nanostructures of
the treated surface were investigated using scanning electron
microscopy (SEM, MIRA3 LMU, TESCAN, Czech Republic),
and the analysis of elemental composition and elemental maps
was carried out by energy-dispersive X-ray spectroscopy (EDS,
TESCAN, Czech Republic). Absorption and transmittance spec-
tra were recorded using an ultraviolet-visible (UV-vis) spectro-
photometer (UV-2600, Japan) with an integrating sphere. The
IR emissivity and reflectance were acquired by a Fourier trans-
form IR spectrometer (Nicolet, NEXUS 670). The temperature
distribution was obtained by an IR camera (Ti450, Fluke, USA).

3. Results and Discussion

Figure 1(a) shows the schematic illustration of the process of the
femtosecond laser ablating glass and the optical principle of the
UT and LT glass. The optical performance of these two samples
in the visible and IR wavelength ranges has depicted an as-
prepared sample with a higher light reflectance, IR emissivity,
and lower transmittance. The surface of the sample after laser
ablation has changed from smooth to rough, and many ran-
domly distributed nanocavities and nanowires were produced.
SEM images further reveal that [Figs. 2(a)–2(c)] at a finer scale.
On account of the generation of these micro/nanostructures,
light is irradiated on the object’s surface, and more refraction
and scattering will occur. Similarly, the 3D and cross-sectional

Fig. 1. (a) Schematic diagram of the laser ablation on one glass side and the
optical principle before and after processing (lower left part). (b) Topography
in 3D and section height map of laser-treated glass.

Fig. 2. (a)–(c) SEM images of the (a) UT and (b), (c) LT glass surfaces. Insets:
high-resolution SEM images of the respective surfaces. (d) Element maps and
(e), (f) EDS spectra of the (e) UT and (f) LT glass surfaces.
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profiles were tested by LCM to evaluate the influence of femto-
second laser ablation [Fig. 1(b)], and it discovered that the
surface roughness was relatively uniform.
Figures 2(a)–2(c) show the SEM topography of the UT and LT

surface. It is evident that the surface of the LT glass has become
much rougher than the UT sample [Fig. 2(a)], and the surface
roughness after machining is homogeneous [Fig. 2(b)]. After
further magnification, it can be found that there are many nano-
wires and nanocavities uniformly and randomly distributed on
the surface. Nanowires in some regions are sintered together,
and this may be due to the higher temperature during the pro-
cedure. The diameters of the nanocavities are 200 to 500 nm,
which scatter visible light strongly andmake the LT glass opaque
to human eyes. The sizes of the holes are also much smaller
than the IR wavelength, so it is beneficial to enhance IR radia-
tion[8]. The characterizedmorphology and roughness are overall
very consistent with the LCM images, further proving that the
fabricated micro/nanostructures by our strategy are uniform.
Femtosecond laser ablation of glass in the air may produce
chemical reactions and lead to changes in the content of chemi-
cal elements[30], so EDS was used to compare and analyze the
elements on the surface of the LT and UT. EDS mapping
presents the elements being evenly distributed after processing.
The rough surfaces constructed by diversemicro/nanostructures

are totally opaque because of the extensive light scattering effect.
When the LT sample is placed on a paper with patterns, the fuzzy
patterns behind the sample can be observed [Fig. 3(a)]. On the con-
trary, the pattern is obviously exhibited when the sample is placed
under the UT glass. Therefore, to compare the influence of the

LT sample surface more accurately, we measured the absorptivity
and transmittance of the samples, respectively [Fig. 3(a)]. In the
wavelength range of 220–1400 nm, the transmittance of the UT
glass is higher than that of the LT glass from 12% to 50%. The
absorption value of UT samples is about 10% lower than that of the
LT glass, which is calculated based on the relation α� ρ� τ = 1
(where α is absorption, τ is transmission, and ρ is reflection).
Moreover, similar phenomena can be observed at IR wavelengths,
where the emissivity increases are attributed to the existence of the
special structures, which leads to the LT glass being able to absorb
a large amount of light energy [Fig. 3(b)]. However, the trend of
reflectance appears inverse, and the spectral reflectance of the
LT glass is consistently lower than that of the UT sample at the
wavelength of 2.5–25 μm.
IR images were recorded to show the capacity of the LT sam-

ple to achieve the improvement of thermal imaging at different
conditions. The surface of the heater was partly covered with two
pieces of insulating cotton, which were used to prevent the
heater and the sample from contacting directly [Fig. 4(a)].
When the constant temperature was set at 150°C, the real-time
thermal imaging was recorded by the IR camera every 30 s, and
the time when the sample was put on the heater was considered
as the initial time [Fig. 4(b)]. As shown in Fig. 4(c), for the UT
and LT areas, the temperature rose quickly in the first 60 s and
then stabilized after about 110 s. After stabilization, the temper-
ature of the UT and LT areas was recorded as about 81.2°C and
72.6°C, respectively. During the whole procedure, the tempera-
ture of the LT glass surface is always higher than that of the
UT surface, which is attributed to the higher emissivity of
the LT region. The UT and the LT glasses, with entirely the
same size of 2 cm × 2 cm, were placed on the hand, respectively
[Fig. 4(d)]. The area covered with the LT glass becomes nearly
invisible under the IR camera, as its surface temperature is too

Fig. 3. (a) Absorption, transmittance and (b) emissivity, reflectance over dif-
ferent wavelength ranges. Insets in (a) show the optical images of samples
before and after laser treatment.

Fig. 4. (a) IR thermal imaging experimental device. (b) IR thermal images.
(c) The surface temperature of LT and UT changes with time in the corre-
sponding experiment. (d) IR thermal images of LT and UT glasses when they
are placed on the hand.
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close to the hand, which is caused by the micro/nanostructures
being induced during the processing. The temperature of the UT
sample is lower by about 2° than the other. All of the data shown
above illustrate that the glass ablated by the femtosecond laser
can enhance IR imaging.

4. Conclusion

In summary, one-sided rough micro/nanostructures glass was
fabricated through a one-step femtosecond laser direct writing
technology. Due to the micro/nanostructures such as nanocav-
ities (about 200–500 nm in diameter) and nanowires appearing
on the surface, this leads to a lot of light energy confined to
micro/nanostructures. Thus, the absorption and emissivity in
the wavelength range of visible light and IR light rise. When
the LT sample was directly placed on the object, the IR thermal
image of the LT glass was more accurate than that of the UT
sample. This work provides a new way to enhance thermal
imaging.
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